212 research outputs found

    Interoperability and machine-to-machine translation model with mappings to machine learning tasks

    Get PDF
    Modern large-scale automation systems integrate thousands to hundreds of thousands of physical sensors and actuators. Demands for more flexible reconfiguration of production systems and optimization across different information models, standards and legacy systems challenge current system interoperability concepts. Automatic semantic translation across information models and standards is an increasingly important problem that needs to be addressed to fulfill these demands in a cost-efficient manner under constraints of human capacity and resources in relation to timing requirements and system complexity. Here we define a translator-based operational interoperability model for interacting cyber-physical systems in mathematical terms, which includes system identification and ontology-based translation as special cases. We present alternative mathematical definitions of the translator learning task and mappings to similar machine learning tasks and solutions based on recent developments in machine learning. Possibilities to learn translators between artefacts without a common physical context, for example in simulations of digital twins and across layers of the automation pyramid are briefly discussed.Comment: 7 pages, 2 figures, 1 table, 1 listing. Submitted to the IEEE International Conference on Industrial Informatics 2019, INDIN'1

    SysML modeling of service-oriented system-of-systems

    Get PDF
    The success of the ongoing fourth industrial revolution largely depends on our ways to cope with the novel design challenges arising from a combination of an enormous increase in process and product complexity, as well as the expected autonomy and self-organization of complex and diverse industrial hardware–software installments, often called systems-of-systems. In this paper, we employ the service-oriented architectural paradigm, as materialized in the Eclipse Arrowhead framework, to represent modern systems engineering principles and their open structural principles and, thus, relevance to flexible and adaptive systems. As for adequately capturing the structural aspect, we propose using model-based engineering techniques and, in particular, a SysML-based specialization of systems modeling. The approach is illustrated by a real-life use-case in industrial automation.publishedVersio

    Interoperability for Industrial Internet of Things Based on Service-oriented Architecture

    Get PDF
    The new Industry 4.0 envisions a future for agile and effective integration of the physical operational technologies (OT) and the cyber information technologies (IT) as well as autonomous cooperation among them. However, the wide variety and heterogeneity of industrial systems and field devices -especially on the factory floor - increase integration complexity. To address these challenges, new technologies and concepts such as the Industrial Internet of Things (IIoT), Service-oriented Architecture (SoA), Semantic Technologies, Machine Learning and Artificial Intelligence are being introduced to the industrial environment. In this paper, we focus on how industrial automation systems and field devices can be integrated into the IIoT framework and coordinated to adapt to dynamic operating environment. Specifically, this paper proposed an interoperability solution that makes use of SoA and Semantic Technologies to achieve supervised coordination of IIoT application systems. To illustrate the potential of this approach, the Service-oriented Architecture-based Arrowhead Framework is used as the fundamental framework for the implementation of the approach.acceptedVersio

    Plant descriptions for engineering tool interoperability

    Get PDF
    The emergence and deployment of connected devices in many domains of application (e.g. industrial production, buildings and facilities, urban environment, etc.) have resulted in the need to achieve integration of multiple and more complex systems. This new environment is stressing the intrinsic limits imposed by monolithic standards, data models and integration methods that focus on specific domains of application, types of systems, or specific aspects of a system. This paper describes the Plant Description Service developed as part of the Arrowhead Interoperability framework (EU ECSEL funded project). The manuscript contains a description of the abstract system descriptive model based on which the Plant Description service was implemented, and describes how the service can be used to achieve integration of several industry standards and data models. Case studies are provided that illustrates how the service was practically implemented to support engineering scenarios in the domain of industrial production. The paper concludes with a critical review of the approach and suggestion for future work and developments

    An Engineering Process model for managing a digitalised life-cycle of products in the Industry 4.0

    Get PDF
    The Internet of Things (IoT), and more specifically the industrial IoT, is revolutionising industry. This technology has catalyzed the fourth industrial revolution and inspired movements such as Industry 4.0, the Industrial Internet Consortium and Society 5.0. Morphing an industrial process or assembly line to aggregate Internet-connected devices and systems does not complete the picture. The concept penetrates all aspects of the engineering process (EP) which encompasses the full lifecycle of the product/solution. Phases of the EP traditionally tended to be sequential but, with the IoT, can now evolve and influence other phases throughout the product/solution lifecycle. The EU-funded Arrowhead Tools project aims to promote a service-oriented architecture (SOA) to allow tools within each phase of the engineering process to interact with each other. This paper, applies the proposed EP model to a real value chain composed of multiple stakeholders adopting different EPs for the life-cycle management of a Smart Boiler System

    Application of Contactless Testing to PCBs with BGAs and Open Sockets

    Full text link

    Security and Autonomic Management in System of Systems

    Get PDF
    A system of systems integrates systems that function independently but are networked together for a period of time to achieve a higher goal. These systems evolve over time and have emergent properties. Therefore, even with security controls in place, it is difficult to maintain a required level of security for the system of systems as a whole because uncertainties may arise at runtime. Uncertainties can occur from internal factors, such as malfunctions of a system, or from external factors, such as malicious attacks. Self-adaptation is an approach that allows a system to adapt in the face of such uncertainties without human intervention. This work outlines the progress made towards security mitigation in system of systems using a generic autonomic management system to assist engineers in developing self-adaptive systems. The manuscript describes the proposed system design, its implementation as part of the Eclipse Arrowhead framework, and its functionality in a smart agriculture use case. The system is designed and implemented in such a way that it can be reused and extended for a variety of use cases without requiring major changes

    Organizing IoT Systems-of-Systems from standardized engineering data

    Full text link
    Tackling current challenges in production automation requiresthe involvement of new concepts like Internet of Things,System-of-Systems and local automation clouds.The objective of this paper is to address the actual process of defining a cloud based automation system. More specifically the design, engineering, operation and maintenance of an automation system must be captured and managed between all stakeholders involved. This is critical to create the expected benefits from the local automation cloud approach.This paper addresses the capability of capturing plant designs and coordinating information exchange based on the captured architecture.For this purpose an architectural component --~Plant Description~-- is proposed to be used in the Arrowhead Framework, based on already existing plant automation standards.An overview of methodologies on how it can interact with the Arrowhead Framework's Orchestration process describes the usefulness in managing large-scale automation systems.A qualitative evaluation for one of the proposed approaches is also described in a water control use case that can be found both in process and building automation

    Migration of industrial process control systems into service oriented architecture

    Full text link
    The procedure of migrating SCADA and DCS func- tionality of the isa95 process automation architecture to a Service based automation architecture is discussed. Challenges in such migration are discussed and defined. From here the necessary migration technology and procedures are proposed. The critical migration technology is based on the mediator concept. The migration procedure is based on a functionality perspective and comprises four steps: initiation, configuration, data processing and control execution. Its argued that these steps are necessary for the successful migration of DCS and SCADA functionality in to the automation cloud.Validerad; 2012; 20120724 (jerker
    • …
    corecore